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1. Introduction

In a recent article [1], Hosomichi and I solved the H+
3 model on a disc with boundary con-

ditions corresponding to AdS2 D-branes. However the solution was formulated in terms

of variables which are well-adapted to the H+
3 -Liouville relation, but which obscure the

symmetry of the model. For the structure and consequences of the solution to be under-

stood, the symmetry should be made manifest, and this requires some more work. It is

particularly important to perform this work in the case of the boundary three-point func-

tion because, coming after the bulk three-point function [2] and bulk-boundary two-point

function [1], this completes a set of correlation functions from which all others can be ob-

tained. In addition, the boundary three-point function describes the dynamics of boundary

condition changing operators, and makes it possible to investigate the structural properties

of the model.
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The first purpose of the present article is therefore to explicitly write and analyze the

boundary three-point function. This will confirm the correctness of the solution of the H+
3

model on the disc. In particular, the geometrical (“minisuperspace”) analysis and the anal-

ysis of the symmetries of the boundary three-point function can be understood as further

pieces of evidence for the solution proposed in [1]. The second main purpose of the article

is to initiate the study of the structure of the boundary H+
3 model, with the eventual aim of

confronting it with general ideas on the structure of boundary conformal field theories. Of

course I cannot a priori assume a general result like the relation between fusing matrix and

boundary three-point function to hold in the H+
3 model, because this non-rational, non-

unitary, and non-holomorphically factorizable model violates the assumptions under which

such a result is derived. It will however turns out that the boundary three-point function

in H+
3 can indeed be expressed in terms of certain fusing matrix elements, provided one

introduces a correspondence between the AdS2 D-branes and the discrete representations

of the symmetry group, although such representations are absent from the spectrum.

The calculation of the relevant H+
3 fusing matrix elements will not rely on a systematic

analysis of the H+
3 conformal blocks, which is postponed to future work. Rather, I will make

a straightforward and somewhat naive use of the H+
3 -Liouville relation, which in certain

cases yields the H+
3 fusing matrix elements in terms of Liouville theory fusing matrix

elements. Such an approach is justified a posteriori by the relation with the boundary

three-point function.

The plan of the article is as follows. Section 2 is devoted to defining the boundary

three-point function (2.11) and deriving some features which can be predicted without

knowledge of the exact solution, either from a geometrical calculation or from the analysis

of the symmetry of the model. In particular, given the symmetry, the three-point function

is parametrized by two structure constants C± (2.14). In section 3, I will use the exact

solution [1] for checking these predictions, and give an explicit formula (3.20) for the

structure constants. Section 4 is devoted to the computation of fusing matrix elements in

H+
3 , and to their relation (4.30) with the boundary three-point function. This will require

the formal introduction of discrete representations. The concluding section 5 will offer

some speculations which are inspired by these results.

This article can be thought of as a follow-up of [1], which is briefly summarized in [3].

Nevertheless, the necessary results on the H+
3 model on a disc [4, 1] will be recalled,

although not explained in detail. The necessary results on Liouville theory, which come

from the works [5 – 8], will also be recalled, mostly in the conventions of the short review [9].

2. The three-point function: predictions

2.1 Geometrical description

The aim of this subsection is to predict the geometrical limit of the boundary three-point

function in H+
3 . I will first recall (from [4]) which model is obtained as the geometrical limit

of the H+
3 model, and which quantities should have well-defined limits. This will lead to

the definition of a geometrical three-point function, which will then be explicitly computed.

– 2 –
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Geometry of H+
3 and of the AdS2 D-branes. The three-dimensional Euclidean space

H+
3 can be defined as the set of two-by-two Hermitian matrices h of determinant one, and

parametrized by three coordinates (φ, γ, γ̄) such that h =
(

eφ eφγ̄

eφγ eφγγ̄+e−φ

)
. The space H+

3

can also be seen as the right coset SL(2, C)/SU(2), on which an SL(2, C) symmetry group

acts by left multiplication; the resulting action of g ∈ SL(2, C) on the Hermitian matrix h

is g · h = ghg†. The D-branes of interest are Euclidean AdS2 branes, which should more

accurately be called H+
2 branes. They are defined by equations of the type Tr Ωh = 2 sinh r

where the real parameter r determines the curvature of H+
2 while the Hermitian matrix Ω

determines its orientation. Such a D-brane intersects the φ = ∞ boundary of H+
3 , which

is a two-sphere S2, and the intersection is a great circle, with an equation of the type

|γ − γ0| = R0 or ℜ(µ0γ) = λ0.

Let me fix the orientation of the AdS2 branes, and consider only D-branes with the

same matrix Ω = ( 0 1
1 0 ), the same great circle at infinity γ + γ̄ = 0, and the same preserved

SL(2, R) subgroup
{
g =

(
a ic

−ib d

)
, ad − bc = 1, a, b, c, d ∈ R

}
of the SL(2, C) symmetry

group. This assumption ensures that the theory of open strings stretched between two

such D-branes enjoys a maximal amount of symmetry. A further assumption is needed for

the theory of open strings on AdS2 branes to have a geometrical description: open strings

should reduce to point particles, which is only possible if they have both ends on the same

D-brane. In this subsection I will therefore assume all involved AdS2 branes to have the

same parameter r, thus the same equation eφ(γ + γ̄) = 2 sinh r. The theory of open strings

on this D-brane then has a well-defined geometrical description in the minisuperspace limit,

as the quantum mechanics of a point particle in AdS2.

Point particles in AdS2. Point particles in the Euclidean AdS2 are described by their

wavefunctions: complex-valued functions on AdS2. Their spectrum, namely the space of

such functions, can be organized according to the action of the SL(2, R) symmetry group.

Namely, the spectrum is generated by functions

Ψℓ(t|h) =
(
|γ + it|2eφ + e−φ

)ℓ
, (2.1)

which belong to continuous representations of SL(2, R) of spins ℓ ∈ −1
2 + iR and Casimir

eigenvalues −ℓ(ℓ + 1), and t ∈ R is the isospin variable. The transformation of such

functions under the action of g ∈ SL(2, R) is indeed

Ψℓ(t|g · h) = |ct − d|2ℓΨℓ(g · t|h) , g · t =
at − b

−ct + d
. (2.2)

Let me define the geometrical three-point function on an AdS2 brane of parameter r as

Ωgeom
3 ≡

∫
dh δ(eφ(γ + γ̄) − 2 sinh r)

3∏

i=1

Ψℓi(ti|h) , (2.3)

where dh = e2φdφ d2γ is the SL(2, C)-invariant measure on H+
3 . The purpose of this

subsection is to obtain the explicit expression of Ωgeom
3 .

– 3 –
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Calculation of Ωgeom
3 . The calculation goes as follows (neglecting numerical factors).

Perform the integral over γ + γ̄ and write γ = e−φ sinh r− iρ with ρ ∈ R, then perform the

shift φ → φ + log cosh r. This yields

Ωgeom
3 = (cosh r)

P

ℓi+2

∫
eφdφ dρ

3∏

i=1

(
|ρ − ti|2eφ + e−φ

)ℓi

. (2.4)

Having made the r-dependence explicit, the next step is to make the ti-dependence explicit:

Ωgeom
3 = (cosh r)

P

ℓi+2 |t12|ℓ
3
12 |t13|ℓ

2
13 |t23|ℓ

1
23 Cgeom(ℓ1, ℓ2, ℓ3) , (2.5)

with the notations t12 = t1 − t2 and ℓ3
12 = ℓ1 + ℓ2 − ℓ3. This formula can be derived by

using the SL(2, R) symmetry of Ωgeom
3 , and its explicit expression in the limit t3 → ∞,

after performing the change of variables (φ, ρ) → (φ− log |t12|, t21ρ+t1). This also provides

the integral expression of Cgeom, the geometrical limit of the three-point structure constant

at r = 0:

Cgeom =

∫
eφdφ dρ

(
ρ2eφ + e−φ

)ℓ1 (
(ρ − 1)2eφ + e−φ

)ℓ2
eℓ3φ . (2.6)

Now introduce variables (x1, x2) = (eφρ, eφ(1−ρ)), while allowing eφ to take all real values,

Cgeom =

∫

R2

dx1 dx2 |x1 + x2|−ℓ312−1(1 + x2
1)

ℓ1(1 + x2
2)

ℓ2 . (2.7)

Inserting 1 =
∫

dy δ(y + x1 + x2) and δ(y + x1 + x2) =
∫

dθ eiθ(y+x1+x2) yields

Cgeom =

∫
dθ

∫
dy dx1 dx2 eiθ(y+x1+x2)|y|−ℓ312−1(1 + x2

1)
ℓ1(1 + x2

2)
ℓ2 (2.8)

= 2ℓ1+ℓ2
Γ(−ℓ3

12) sin π
2 ℓ3

12

Γ(−ℓ1)Γ(−ℓ2)

∫ ∞

0
dθ θ−ℓ3−1K−ℓ1−

1
2
(θ)K−ℓ2−

1
2
(θ) ,

Cgeom = Γ(−1
2(ℓ123 + 1))

Γ(−1
2ℓ3

12)Γ(−1
2ℓ2

13)Γ(−1
2ℓ1

23)

Γ(−ℓ1)Γ(−ℓ2)Γ(−ℓ3)
, (2.9)

where I used standard formulas [10] for the Bessel function with imaginary argument K,

and the integral formula (A.8). (And a new notation: ℓ123 = ℓ1 + ℓ2 + ℓ3.)

The formula for Cgeom is permutation-symmetric, which is a basic check of its cor-

rectness. It vanishes for discrete spins ℓ ∈ N, which explains the absence of discrete

representations in the spectrum, in spite of their appearance in tensor products of contin-

uous representations. And it will be shown to agree with the geometrical limit of the exact

open string three-point function in subsection 3.3.

2.2 Symmetry

Let me leave the geometrical limit and consider more general boundary three-point func-

tions, where open strings can have their ends on different AdS2 D-branes. I will now derive

the constraints on the boundary three-point function which follow from the assumed sym-

metries of the model. The symmetry group of the model is an infinite-dimensional loop

group, whose Lie algebra is the affine Lie algebra ŝℓ2. The three-dimensional horizontal

subgroup will be most relevant in the following.

– 4 –
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Action of the symmetry on the open strings. The global structure of the hori-

zontal subgroup of the symmetry group of the H+
3 model on the disc was understood

only recently [1], because it differs from the SL(2, R) group which is present in the ge-

ometrical limit, and which had naively been expected to be present in the general case

as well. The correct symmetry group is actually S̃L(2, R), the universal covering group,

whose elements are pairs (g, [T ]) with g =
(

a ic
−ib d

)
an element of the same SL(2, R) sub-

group of SL(2, C) as before, and [T ] ∈ Z an integer. The group multiplication law is

(g, [T ]) · (g′, [T ′]) = (gg′, [T ] + [T ′] + [g, g′]) where [g, g′] ∈ {0, 1} is the integer part of

T (g) + T (g′), with T (g) ∈ [0, 1[ a timelike coordinate on SL(2, R). (The elements of the

additive group R can similarly be viewed as pairs of an element of [0, 1[ and an integer,

whose addition law would then be similar to the present S̃L(2, R) multiplication law.) The

action of S̃L(2, R) on vertex operators is1

(g, [T ]) · rΨ
ℓ(t|w)r′ = |ct − d|2ℓe−(k−2)(r−r′)([T ]+ 1

2
+ 1

2
sgn(t− d

c
))

rΨ
ℓ(g · t|w)r′ , (2.10)

where the vertex operator rΨ
ℓ(t|w)r′ , whose position on the boundary of the worldsheet

is w ∈ R, describes an open string stretched between two AdS2 branes with the same

orientation and parameters r and r′; and k > 2 is the level of the H+
3 model, which is

related to the central charge by c = 3k
k−2 , and will sometimes be replaced with the equivalent

parameter b2 = 1
k−2 . Like in the geometrical limit, the spectrum is purely continuous with

spins ℓ ∈ −1
2 + iR.

Definition of the boundary three-point function. The boundary three-point func-

tion is defined as the expectation value

Ω3 =
〈

r31Ψ
ℓ1(t1|w1)r12Ψ

ℓ2(t2|w2)r23Ψ
ℓ3(t3|w3)r31

〉
. (2.11)

From the point of view of two-dimensional conformal field theory, this describes the in-

sertion of three vertex operators on the circular boundary of a disc worldsheet. From the

target space point of view, this describes three open strings stretched between three AdS2

branes of parameters r12, r23, r13, whose identical orientation means they coincide at in-

finity. (For convenience, only two dimensions of H+
3 are represented here, and the sphere

S2 at infinity is represented as a dashed circle. The open string states are represented

as well-localized wiggly lines, although in reality the operators Ψℓi rather correspond to

momentum eigenstates.)

1The present convention for the sign of the exponent differs from [1]. The present convention will be

consistent with the chosen conventions in Liouville theory through the H+
3 -Liouville relation. I believe that

the conventions in [1] were not consistent in this respect.
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+
Ψℓ1

w1

+

Ψℓ3

w3+

Ψℓ2

w2

r31r12

r23

r12r23r31

Ψℓ2Ψℓ3

Ψℓ1

Worldsheet Target space

The dependence of the three-point function on the boundary coordi-

nates wi ∈ R is determined by conformal symmetry to be a factor

|w12|∆ℓ3
−∆ℓ1

−∆ℓ2 |w23|∆ℓ1
−∆ℓ2

−∆ℓ3 |w13|∆ℓ2
−∆ℓ1

−∆ℓ3 , which will be omitted henceforth.

Here ∆ℓ = − ℓ(ℓ+1)
k−2 is the conformal weight of Ψℓ, and w12 = w1 − w2. It is however

necessary to keep track of the order of the fields on the boundary of the disc. The

three-point function is indeed expected to be invariant under cyclic permutations, but

not under a permutation of two fields. This differs from the full permutation symmetry

of the boundary three-point function of say Liouville theory. This is because the H+
3

boundary field rΨ
ℓ(t|w)r′ and its symmetry transformation (2.10) are nontrivially affected

by the exchange of the two boundary conditions r, r′. In other words, the boundary

theory is not invariant under worldsheet parity. Here I am assuming the boundary to be

oriented counterclockwise, and the boundary operators to come in the order 1, 2, 3 like in

formula (2.11).

Solving the S̃L(2, R) symmetry condition. The S̃L(2, R) symmetry condition on the

boundary three-point function is
〈
(g, [T ]) · Ψℓ1 (g, [T ]) · Ψℓ2 (g, [T ]) · Ψℓ3

〉
=

〈
Ψℓ1 Ψℓ2 Ψℓ3

〉
, (2.12)

which explicitly reads

Ω3

(
at1 − b

−ct1 + d
,

at2 − b

−ct2 + d
,

at3 − b

−ct3 + d

)
(2.13)

= e−
k−2
2 [r12(sgn(t1−

d
c
)−sgn(t2−

d
c
))+r23(sgn(t2−

d
c
)−sgn(t3−

d
c
))+r31(sgn(t3−

d
c
)−sgn(t1−

d
c
))] Ω3 .

The general solution is found with the help of the identity (A.9),

Ω3 = |t12|ℓ
3
12 |t13|ℓ

2
13 |t23|ℓ

1
23e

k−2
2

[r12sgnt12+r23sgnt23+r31sgnt31] Csgnt12t23t31 , (2.14)

where Cλ is an arbitrary function of the S̃L(2, R)-invariant combination λ = sgnt12t23t31 =

±. Thus, the boundary three-point function is written in terms of two independent struc-

ture constants C±. This reflects the fact that the tensor product of two continuous repre-

sentation contains two copies of each continuous representation.

Notice that r12, r23, r31, C± cannot be unambiguously determined from Ω3. The am-

biguity corresponds to the invariance of Ω3 under rij → rij + r0, Cλ → e
k−2
2

r0λCλ, which

follows from the identity (A.9). This ambiguity will be relevant in the comparison between

the exact three-point function and the geometrical prediction.
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z ∞ 0 1 ∞ 0 1 ∞

sgn(ν1,ν2,ν3) (–+) (+-+) (+–) (++-) (-+-) (-++)

Notation [+312] [-231] [+123] [-312] [+231] [-123]

Table 1: The space of values of νi as a double cover of the z-axis. (The notation for a regime

indicates first sgnν1ν2ν3 = ±, then the order of the fields on the worldsheet boundary, starting with

the index i such that sgnνi = sgnν1ν2ν3).

2.3 Fourier transformation to the ν-basis

The first aim of the next section will be to check that the H+
3 boundary three-point func-

tion predicted by the H+
3 -Liouville relation is of the form (2.14) dictated by the SL(2, R)

symmetry. However, the H+
3 -Liouville relation will not directly yield the boundary three-

point function Ω3 of the t-basis fields rΨ
ℓ(t|w)r′ used so far, but rather the following ν-basis

boundary three-point function

Ω̃3 =
3∏

i=1

(
|νi|ℓi+1

∫

R

dti eiνiti

)
Ω3 =

〈
r31Ψ

ℓ1(ν1|w1)r12Ψ
ℓ2(ν2|w2)r23Ψ

ℓ3(ν3|w3)r31

〉
,(2.15)

where the ν-basis boundary fields are defined as

rΨ
ℓ(ν|w)r′ = |ν|ℓ+1

∫

R

dt eiνt
rΨ

ℓ(t|w)r′ , ν ∈ R . (2.16)

The present subsection is therefore devoted to the technical task of computing Ω̃3 by

straightforward Fourier transformation of the t-basis result (2.14), which amounts to for-

mulating the S̃L(2, R) symmetry constraint in the ν-basis.

Properties of the ν-basis. Only two of the three independent S̃L(2, R) symmetries have

a simple action on ν-basis fields. The first one is t-translation symmetry, which implies ν

conservation, so that the ν-basis three-point function Ω̃3 must have a δ(ν1 +ν2 +ν3) factor.

The second one is t-dilatation symmetry, which corresponds to ν-dilatation symmetry, and

implies that Ω̃3 is a nontrivial function of only one dilatation-invariant real variable, say

z = −ν1
ν2

∈ R. Note however that only positive dilatations are allowed, namely νi → ανi

with α > 0. The nontriviality of the transformation νi → −νi implies that Ω̃3 should be

thought of as a function on a double cover of R, see table 1.

Let me describe more precisely the ν-dependence of Ω̃3. As will follow from the direct

calculation of Ω̃3, and could alternatively be derived from the local sℓ(2, R) symmetry, Ω̃3

is a linear combination of hypergeometric functions of the type:

F (3)
η ≡ δ(

∑
νi)|ν1|−ℓ1−ℓη

3−1|ν2|ℓ2+1|ν3|ℓ
η
3+1F

(
ℓ123η + 2, ℓ1

23η + 1, 2ℓη
3 + 2,−ν3

ν1

)

= δ(
∑

νi)|ν1|ℓ1+1|ν2|−ℓ2−ℓη
3−1|ν3|ℓ

η
3+1F

(
ℓ123η + 2, ℓ2

13η + 1, 2ℓη
3 + 2,−ν3

ν2

)

– 7 –
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F (2)
η ≡ δ(

∑
νi)|ν1|ℓ1+1|ν2|ℓ

η
2+1|ν3|−ℓ1−ℓη

2−1F

(
ℓ12η3 + 2, ℓ3

12η + 1, 2ℓη
2 + 2,−ν2

ν3

)
(2.17)

= δ(
∑

νi)|ν1|−ℓη
2−ℓ3−1|ν2|ℓ

η
2+1|ν3|ℓ3+1F

(
ℓ12η3 + 2, ℓ1

2η3 + 1, 2ℓη
2 + 2,−ν2

ν1

)

F (1)
η ≡ δ(

∑
νi)|ν1|ℓ

η
1+1|ν2|−ℓη

1−ℓ3−1|ν3|ℓ3+1F

(
ℓ1η23 + 2, ℓ2

1η3 + 1, 2ℓη
1 + 2,−ν1

ν2

)

= δ(
∑

νi)|ν1|ℓ
η
1+1|ν2|ℓ2+1|ν3|−ℓη

1−ℓ2−1F

(
ℓ1η23 + 2, ℓ3

1η2 + 1, 2ℓη
1 + 2,−ν1

ν3

)

where η = ± and ℓ+ = ℓ, ℓ− = −ℓ − 1 thus ℓ3
12η = ℓ1 + ℓη

2 − ℓ3. The arguments of

the hypergeometric functions are assumed to belong to ] −∞, 1[, which happens for F (3)
η

provided ν1ν2 < 0. (In particular, F (3)
η has a power-like behaviour near ν3 = 0, but behaves

as a linear combination of powers of |ν1| and |ν2| near ν1 = 0 and ν2 = 0 respectively.)

Therefore, out of the three alternative bases F (1)
η ,F (2)

η ,F (3)
η , only two can be used for given

values of ν1, ν2, ν3. For instance, in the regimes [±312], the two bases F (1)
η ,F (2)

η .

So the ν-basis three-point function Ω̃3 should have expressions of the form

Ω̃3 =
∑

λ=±

Cλ

∑

η=±

T
[sgnνi]
λ,η F (j)

η , (2.18)

where [sgnνi] denotes a regime, for instance [+312], and j denotes one of the two allowed

bases in that regime, here j = 1, 2. Depending on this choice of basis, the coefficient will be

denoted as T
[+3(1)2]
λ,η or T

[+31(2)]
λ,η . These coefficients relate the ν-basis three-point structure

constants C̃
[sgnνi]
η =

∑
λ=± CλT

[sgnνi]
λ,η , which depend on the choices of regime and basis, to

the t-basis three-point structure constants Cλ, which do not.

Calculation of Ω̃3. Let me explicitly demonstrate that Ω̃3 indeed has an expression of

the form (2.18), and determine the coefficients Tλ,η, by computing the integral (2.15). This

integral can be split into six terms corresponding to the six possible orderings of t1, t2, t3
on the real line. Up to a global rij-dependent factor, the ordering t1 < t2 < t3 yields the

following term:

J123 ≡
3∏

i=1

|νi|ℓi+1

∫

t1<t2<t3

dt1 dt2 dt3 ei(ν1t1+ν2t2+ν3t3)|t12|ℓ
3
12 |t23|ℓ

1
23 |t13|ℓ

2
13 . (2.19)

Introduce a variable u by |t13|ℓ
2
13 = 1

Γ(−ℓ213)

∫ ∞
0 du e−u|t1−t3|u−ℓ213−1. Shift t1 → t1 + t2 and

t3 → t3 + t2, then integrate over ti, and find

J123 = δ(ν1 + ν2 + ν3)

3∏

i=1

|νi|ℓi+1 (2.20)

×Γ(ℓ3
12 + 1)Γ(ℓ1

23 + 1)

Γ(−ℓ2
13)

∫ ∞

0
du u−ℓ213−1(u + iν1)

−ℓ312−1(u − iν3)
−ℓ123−1 .

The result is an hypergeometric function [10], which is a priori ambiguous when its (real)

argument belongs to ]1,∞[. In this case, by construction, the hypergeometric function is
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determined by analytic continuation from the region iν1,−iν3 ∈ R+. This understood, the

result can be written as

J123 = Γ(ℓ3
12 + 1)Γ(ℓ1

23 + 1)
Γ(ℓ123 + 2)

Γ(2ℓ2 + 2)
ei π

2
(ℓ123+2)sgnν3F (2)

+ . (2.21)

Now consider all six terms contributing to the integral (2.15) in the regime [σ123] with

σ = sgnν1 = −sgnν2 = −sgnν3. The four terms J123, J132, J231, J321 yield “good” hy-

pergeometric functions F (2)
+ ,F (3)

+ with arguments in ] −∞, 1[, whereas the two remaining

integrals J213, J312 yield “bad” hypergeometric functions F (1)
+ with arguments in ]1,∞[.

These can however be unambiguously rewritten as combinations of either F (2)
± or F (3)

±

functions. The end result is Ω̃3 =
∑

λ Cλ
∑

η T
[σ1(2)3]
λ,η F (2)

η , with the blocks F (2)
η of eq. (??)

and the coefficients

T
[σ1(2)3]
λ,+ =

1

8
Γ(ℓ123 + 2)Γ(ℓ1

23 + 1)Γ(ℓ3
12 + 1)Γ(−2ℓ2 − 1)eiλσ π

2
ℓ123 (2.22)

×
[
eλ

r23−r31−r12
2b2 sinπℓ1

23+eλ
r12−r23−r31

2b2 sin πℓ3
12−eλ

r31−r12−r23
2b2 e−iλσπℓ123 sin 2πℓ2

]
,

T
[σ1(2)3]
λ,− = −π

4
Γ(ℓ2

13 + 1)Γ(2ℓ2 + 1)e−λ
r31
2b2 eiλσ π

2
(ℓ213+1) sin

(
πℓ2 + iσ

r23 − r12

2b2

)
. (2.23)

This completes the computation of the Fourier transform Ω̃3 of the general solution

Ω3 (2.14) of the S̃L(2, R) symmetry condition. The coefficients Tλ,η which appear in the

result will play an important role in the following, so let me study some of their properties.

Some properties of the coefficients Tλ,η. The determinant of the 2× 2 matrix Tλ,η is

det T [σ1(2)3] =
iπ2σ

8(2ℓ2 + 1)
Γ(ℓ3

12 + 1)Γ(ℓ2
13 + 1)Γ(ℓ1

23 + 1)Γ(ℓ123 + 2) (2.24)

× sin

(
πℓ1 + iσ

r31 − r12

2b2

)
sin

(
πℓ2 + iσ

r23 − r12

2b2

)
sin

(
πℓ3 + iσ

r31 − r23

2b2

)
,

and its inverse
(
T−1

)
λ,η

= ηλ
det T T−η,−λ.

The existence of the two bases F (2)
± and F (3)

± means
∑

η T
[σ1(2)3]
λ,η F (2)

η =
∑

η′ T
[σ12(3)]
λ,η′ F (3)

η′ . Given the relations
∑

η F
(i)
η M

(ij)k
ηη′ = F (j)

η′ between the two bases of

conformal blocks F (i),F (j) in regimes where sgnνi = sgnνj , this implies relations of the

type

T
[σ1(2)3]
λ,η =

∑

η′

M
(23)1
ηη′ T

[σ12(3)]
λ,η′ , (2.25)

where the monodromy matrix is

M
(23)1
ηη′ =

Γ(2ℓη′

3 + 2)Γ(−2ℓη
2 − 1)

Γ(1 + ℓ1 − ℓη
2 + ℓη′

3 )Γ(−ℓ1 − ℓη
2 + ℓη′

3 )
, η, η′ = ± . (2.26)

(Such relations can be explicitly checked using T
[σ12(3)]
λ,η = T

[−σ1(3)2]
λ,η .)
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S̃L(2, R) symmetry condition in the ν-basis. Finally, examining the coefficients Tλ,η

yields the ν-basis formulation of the S̃L(2, R) symmetry condition, that is the formulation

which will be used in the next section. The global structure of the symmetry group

S̃L(2, R) is actually encoded in the behaviour of Ω̃3 when each of the νi vanish, say

ν2 = 0. Such a point separates two regimes where the F (2)
η basis can be used, say [σ123]

and [−σ312]. It turns out that the coefficient Tλ,+ is continuous across this singularity,

whereas Tλ,− has a jump:

T
[σ1(2)3]
λ,+ = T

[−σ31(2)]
λ,+ , T

[σ1(2)3]
λ,− =

sin
(
πℓ2 + iσ r23−r12

2b2

)

sin
(
πℓ2 − iσ r23−r12

2b2

)T
[−σ31(2)]
λ,− . (2.27)

Since this does not depend on λ, this can be interpreted as the jump condition on

the ν-basis three-point structure constants C̃
[sgnνi]
η =

∑
λ=± CλT

[sgnνi]
λ,η . Thus, S̃L(2, R)

symmetry relates the ν-basis structure constants in the six regimes (1). Only two of these

structure constants are independent, as is expected from their relation with the two t-basis

structure constants Cλ.

3. The three-point function: explicit calculation

The symmetry properties of the three-point function, in other words the kinematics, leave

the two structure constants Cλ in (2.14) undetermined. The geometrical calculation only

gives very partial information on these structure constants. A full determination requires

a more powerful dynamical principle. The principle which I will now use is the relation of

the H+
3 model with Liouville theory [11, 1]. The boundary three-point function following

from this principle leads to a crossing-symmetric four-point function [1]. The agreement of

the H+
3 -Liouville relation with the S̃L(2, R) symmetry analysis and with the geometrical

calculation is however not obvious, and will have to be checked explicitly.

3.1 The three-point function from Liouville theory

The H+
3 -Liouville relation predicts all correlators of the H+

3 model on a disc in terms of

correlators of Liouville theory on a disc. In this subsection I will review this prediction in

the particular case of the H+
3 boundary three-point function, and show that in this case

the relevant Liouville correlators can be explicitly computed.

Prediction of the boundary three-point function. According to [1],

Ω̃3 = δ(
∑

νi)|
∑

νiwi|1+
3

2b3 |ν1ν2ν3w12w23w31|−
1

2b2

〈
Bβ1(w1)B

β2(w2)B
β3(w3)B

− 1
2b (y)

〉
.(3.1)

The correlator is a disc boundary four-point function in Liouville theory at central charge

cL = 1 + 6Q2 with Q = b + b−1 and b2 = 1
k−2 , which involves three boundary fields of

momenta βi = b(ℓi +1)+ 1
2b and conformal weight βi(Q−βi), together with one degenerate

boundary field of momentum − 1
2b , whose position y = −ν1w2w3+ν2w3w1+ν3w1w2

ν1w1+ν2w2+ν3w3
is more

elegantly defined as

ϕ(y) = 0 where ϕ(y) ≡
∑

i

νi

y − wi
. (3.2)
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The degenerate field B− 1
2b (y) needs not always be located between w3 and w1 as in (3.1),

but can live at any position on the worldsheed boundary, depending on the variables νi:

more precisely, between fields at wi and wj if and only if νiνj > 0. The behaviour of

Liouville theory on the boundary of the worldsheet is assumed to be characterized by so-

called FZZT branes [5, 6]. The parameter of the FZZT brane at a point w of the boundary

is assumed to be2

s =
r

2πb
− i

4b
sgnϕ(w) , (3.3)

where r is the H+
3 model’s boundary parameter (r12,r23 or r31) at the same point w. In

the regime [+123] i.e. ν2, ν3 < 0 < ν1 the worldsheet looks like

+
Ψℓ1(ν1>0)

w1

+

Ψℓ3(ν3<0)

w3+

Ψℓ2(ν2<0)

w2

r31r12

r23

+
Bβ1

w1

+

Bβ3

w3+

Bβ2

w2

r31
2πb + i

4b
r12
2πb − i

4b

bc

B− 1
2b

y
r23
2πb − i

4b
r23
2πb + i

4b

H+
3 model Liouville theory

Calculation of the relevant Liouville four-point function. Due to the presence

of the degenerate field B− 1
2b , the four-point function in eq. (3.1) obeys a second-order

differential equation [12]. The conformal blocks which solve this equation are, up to power

factors, hypergeometric functions of cross-ratios of the type (y−w2)(w1−w3)
(y−w3)(w1−w2)

= −ν2
ν3

. It can be

checked3 that these hypergeometric solutions, combined with the extra factors in eq. (3.1),

yield the functions F (i)
η (??). (Here and in the following I omit the w-dependence of the

H+
3 three-point function.) The two alternative bases of conformal blocks for given values

of sgnνi correspond to two possible decompositions of the Liouville four-point function.

For instance, if w2 < y < w3 then the field B− 1
2b (y) can be associated with either Bβ2(w2)

or Bβ3(w3). In the former case, this means choosing the basis of conformal blocks F (2)
η ,

such that each block F (2)
± has a power-like behaviour in the limit y → w2 ⇔ ν2 → 0. This

basis has two elements η = ±, which correspond to the two fusion channels B− 1
2b ×Bβ2 →∑

η=± Bβ2−
η
2b . The corresponding Liouville conformal blocks can be drawn as follows:

F (2)
η ∝

β3

− 1
2bβ2

β1

β2 − η
2b

, F (3)
η ∝

β3β1

β2 − 1
2b

β3 − η
2b . (3.4)

2The convention for the Liouville boundary parameter s is that the boundary cosmological constant is

proportional to cosh 2πbs.
3A similar calculation was written explicitly in [11] in the case of the relation between the H+

3 three-point

function and the Liouville four-point function on a sphere.
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The coefficients of the decomposition of the Liouville four-point function in conformal

blocks are certain Liouville structure constants. In the regime [σ1(2)3] with the choice of

basis F (2)
η , the H+

3 three-point function (3.1) then reads

Ω̃3 =
∑

η=±

CL


β1 |

r12
2πb

−σ i
4b

β2 − η
2b |

r23
2πb

−σ i
4b

β3 |
r31
2πb

+σ i
4b




×CL


β2 |

r23
2πb

+σ i
4b

− 1
2b |

r23
2πb

−σ i
4b

Q − β2 + η
2b |

r12
2πb

−σ i
4b


F (2)

η , (3.5)

where the CL are Liouville three-point structures constants.

Liouville theory structure constants. The Liouville three-point structure constant

is explicitly known [7] as a function of the three momenta βi and the three boundary

parameters sij:

CL

(
β1 |

s12

β2 |
s23

β3 |
s31

)
= µ

Q−β123
2b

L

Γb(2Q − β123)Γb(β
1
23)Γb(Q − β2

13)Γb(Q − β3
12)

Γb(Q − 2β3)Γb(Q − 2β2)Γb(Q − 2β1)Γb(Q)

×Sb(Q − β3 + is31 − is23)Sb(Q − β3 − is23 − is31)

Sb(β2 + is12 − is23)Sb(β2 − is23 − is12)

×1

i

Q+i∞∫

Q−i∞

dp

4∏

i=1

Sb(Ui + p)

Sb(Vi + p)
, (3.6)

where the special functions Γb and Sb are described in the appendix, µL is the renormalized

Liouville cosmological constant, and the coefficients Ui, Vi read

U1 = is31 − β1 V1 = −is23 − β1 + β3

U2 = −is31 − β1 V2 = Q − is23 − β1 − β3

U3 = −Q + β2 − is23 V3 = is12

U4 = −β2 − is23 V4 = −is12

(3.7)

In this formula the symmetries of CL are not manifest: neither the invariances under per-

muations of the indices and under individual reflections of boundary parameters sij → −sij,

nor the reflection symmetry CL

(
β1 |

s12

β2 |
s23

β3 |
s31

)
= RL

s31,s12
(β1) CL

(
Q − β1 |

s12

β2 |
s23

β3 |
s31

)

(where RL is given in eq. (3.10)).

The degenerate structure constant CL(β2| − 1
2b |Q − β2 + η

2b) in (3.5) follows from the

known formulas [5]

CL


β|

s
− 1

2b |
s−σ i

2b

Q − β + 1
2b |

s′


 = 1 , (3.8)

CL


β|

s
− 1

2b |
s−σ i

2b

Q − β − 1
2b |

s′


 = RL

s′,s(β)RL
s−σ i

2b
,s′

(Q − β − 1
2b) . (3.9)
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The first formula is actually a normalization convention, from which the second one is de-

duced by using the boundary reflection relation sB
β
s′ = RL

s,s′(β) sB
Q−β
s′ , where the boundary

reflection coefficient is

RL
s,s′(β) = µ

Q−2β
2b

L

Γb(2β − Q)

Γb(Q − 2β)

∏

±,±

Sb(Q − β ± is ± is′) . (3.10)

3.2 Check of the symmetry

The formula (3.5) for the ν-basis three-point function Ω̃3 is explicit but not particularly

illuminating, and it depends on the choices of a particular regime of values of νi and of

a particular basis of conformal blocks. I will now recast it as a formula for the t-basis

structure constants Cλ defined in (2.14), which have no such restrictions and enjoy nicer

symmetry properties.

Before doing this, it is however necessary to show that the explicit formula for Ω̃3 is

indeed compatible with the S̃L(2, R) symmetry which underlies the very definition of Cλ.

Recall that the S̃L(2, R) symmetry condition for the boundary three-point function can

be formulated as a condition on its behaviour across a singularity of the type ν2 = 0, see

eq. (2.27). So how does the explicit expression (3.5) behave near ν2 = 0?

The three-point function Ω̃3 near ν2 = 0. This amounts to studying the behaviour of

the Liouville four-point function in (3.1) near y = w2, at which point the degenerate field

B− 1
2b (y) crosses the field Bβ2(w2). Assuming ν1 > 0 and ν3 < 0, the worldsheet near w2

then looks like:

ν2 > 0 ν2 < 0

+bc

r12
2πb − i

4b
r12
2πb + i

4b
r23
2πb − i

4b

B− 1
2b Bβ2

+ bc

r12
2πb − i

4b
r23
2πb + i

4b
r23
2πb − i

4b

B− 1
2bBβ2

The most complicated factor in (3.5), namely CL(β1|β2 − η
2b |β3), is actually continuous

across ν2 = 0. This factor is indeed a Liouville three-point structure constant involving

the field Bβ2−
η
2b which results from the fusion of B− 1

2b and Bβ2: once they have fused, it

does not matter which directions the fields came from. On the other hand, the relative

positions of the two fields influence the other factor CL(β2| − 1
2b |Q − β2 + η

2b) in the case

η = −, because this factor is then sensitive to the boundary parameter between the two

fields, as is clear from eq. (3.9):

CL


β2 |

r23
2πb

+σ i
4b

− 1
2b |

r23
2πb

−σ i
4b

Q − β2 + 1
2b |

r12
2πb

−σ i
4b




CL


β2 |

r23
2πb

−σ i
4b

Q − β2 + 1
2b |

r12
2πb

−σ i
4b

− 1
2b |

r12
2πb

+σ i
4b




=
RL

r12
2πb

−σ i
4b

,
r23
2πb

+σ i
4b

(β2)

RL
r12
2πb

+σ i
4b

,
r23
2πb

−σ i
4b

(β2)
(3.11)

=
sin

(
πℓ2 + iσ r23−r12

2b2

)

sin
(
πℓ2 − iσ r23−r12

2b2

) .

– 13 –



J
H
E
P
0
1
(
2
0
0
8
)
0
0
4

The agreement of this formula with the S̃L(2, R) symmetry condition eq. (2.27) demon-

strates the consistency of the H+
3 -Liouville relation for the boundary three-point function

with the S̃L(2, R) symmetry.

Determination of the structure constants Cλ. Let me compare the expression (3.5)

of Ω̃3 with the expression (2.18) of an S̃L(2, R)-symmetric three-point function in the ν-

basis. Many apparently different expressions for Cλ can be obtained in the different regimes

of νi, but they are all guaranteed to be equivalent by the S̃L(2, R) symmetry. The two

regimes [±123] alone yield four equations for the two unknowns C±, schematically

CL
σ (β1|β2 − η

2b |β3)C
L
σ (β2| − 1

2b |Q − β2 + η
2b) =

∑

λ=±

CλT
[σ1(2)3]
λ,η , ∀σ = ±, η = ± .(3.12)

A relatively simple formula for Cλ is obtained by solving the two equations (σ = ±, η = −):

Cλ

(
ℓ1 |

r12

ℓ2 |
r23

ℓ3 |
r31

)
= − 2

π3 Γ(−ℓ2
13)Rr12,r23(ℓ2)

×∑
σ=± e

λ
“

r31
2b2

−iσ π
2
ℓ213

”

CL


β1 |

r12
2πb

−σ i
4b

Q − β2 − 1
2b |

r23
2πb

−σ i
4b

β3 |
r31
2πb

+σ i
4b




, (3.13)

where the H+
3 boundary reflection coefficient Rr12,r23(ℓ2) will shortly be introduced

in (3.16), the Liouville boundary three-point function CL is still given by (3.6), with Liou-

ville momenta still given by βi = b(ℓi + 1) + 1
2b . (For a fully explicit formula, see eq. (3.20)

below.)

The manifest symmetry of (3.13) under 1 ↔ 3 shows that Cλ is invariant not only

under cyclic permutations, but under all permutations. Equivalently, the full boundary

three-point function Ω3 (2.14) is invariant under permutations, combined with t → −t in

the case of odd permutations. This invariance of Ω3 follows from the invariance of the

Liouville four-point function (3.1) under cyclic permutations and worldsheet parity.

Reflection properties of the three-point function. For the sake of completeness,

and also in order to introduce the useful quantities Rr,r′(ℓ) and Nσ
r,r′(ℓ), let me discuss

the reflection of boundary fields and correlators in H+
3 . By reflection I mean the relation

between fields of spins ℓ and −ℓ−1, which transform in the same representation of S̃L(2, R).

The reflection of the t-basis boundary field4 is fairly complicated in that it involves an

integral over the isospin variable t,

rΨ
ℓ(t|w)r′ = Rr,r′(ℓ)

∫

R

dt′ |t − t′|2ℓe−
k−2
2

(r−r′)sgn(t−t′)
rΨ

−ℓ−1(t′|w)r′ , (3.15)

with the t-basis reflection number (which is invariant under r ↔ r′)

Rr,r′(ℓ) = Nσ
r,r′(ℓ)R

L
r

2πb
+σ i

4b
, r′

2πb
−σ i

4b

(β) with Nσ
r,r′(ℓ) =

π

Γ(2ℓ + 1)

1

sin(πℓ + iσ r−r′

2b2
)
,(3.16)

4Knowing the reflection behaviour of fields is equivalent to knowing the boundary two-point function [1]
D

rΨ
ℓ1(t1|w1)r′Ψℓ2(t2|w2)r

E
= δ(ℓ1 + ℓ2 + 1)δ(t12) + δ(ℓ1 − ℓ2)R̃

H
r,r′(ℓ1)|t12|

2ℓ1e
1

2
(k−2)(r−r′)sgnt12 .(3.14)
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where β = b(ℓ + 1) + 1
2b . The behaviour of Cλ under reflection can in principle be directly

deduced from the behaviour of individual boundary fields. It is however simpler to formu-

late the problem in the ν-basis, which (as follows from the H+
3 -Liouville relation) actually

diagonalizes reflection:

rΨ
ℓ(ν|w)r′ = RL

r
2πb

+ i
4b

sgnν, r′

2πb
− i

4b
sgnν

(β) rΨ
−ℓ−1(ν|w)r′ . (3.17)

A third way to deduce the reflection of Cλ is to directly use their expression in terms of

the (reflection-friendly) Liouville structure constants (3.12). The result is

Cλ

(
ℓ1 |

r12

ℓ2 |
r23

ℓ3 |
r31

)
=

∑

λ′

R
(2)
λλ′

(
ℓ1 |

r12

ℓ2 |
r23

ℓ3

)
Cλ′

(
ℓ1 |

r12

− ℓ2 − 1 |
r23

ℓ3 |
r31

)
, (3.18)

where the (r31-independent) reflection matrix for the spin ℓ2 is

R(2) = − 1

2π2
Γ(2ℓ2 + 1)Γ(−ℓ3

12)Γ(−ℓ1
23)Rr12,r23(ℓ2) (3.19)

×
(

e−
r12−r23

2b2 sin πℓ3
12 + e

r12−r23
2b2 sinπℓ1

23 e
r12+r23

2b2 sin 2πℓ2

e−
r12+r23

2b2 sin 2πℓ2 e
r12−r23

2b2 sinπℓ3
12 + e−

r12−r23
2b2 sin πℓ1

23

)
.

3.3 Check of the geometrical limit

Let me now compute the geometrical limit of the H+
3 three-point function in order to

compare it with the prediction of subsection 2.1. This amounts to taking the level k

to infinity (equivalently b = (k − 2)−
1
2 → 0), while keeping the spins ℓi fixed, and the

boundary parameters rij fixed and equal to a common value r. Let me perform this limit

on the explicit expression for the boundary three-point structure constant (3.13),

Cλ =
4

iπ2

(µL

b2

)−
ℓ123+2

2 Γb(−bℓ2
13)Γb(−bℓ3

12)Γb(−b(ℓ123 + 2))Γb(Q + bℓ1
23)

Γb(Q)
∏3

i=1 Γb(−b(2ℓi + 1))
(3.20)

×
∑

σ=±

e
λ
“

r31
2b2

+iσ π
2
ℓ213

”

Sb(
1
2b + iσ r12+r23

2πb − bℓ2)Sb(iσ
r23−r12

2πb − bℓ2)

Sb(
1
2b + iσ r23+r31

2πb + b(ℓ3 + 1))Sb(iσ
r23−r31

2πb + b(ℓ3 + 1))

∫
dp

Sb(
1
2b +iσ r23+r31

2πb − bℓ1 + bp)Sb(iσ
r23−r31

2πb −bℓ1+bp)Sb(−bℓ2+bp)Sb(Q+bℓ2+bp)∏
± Sb(Q + b(ℓ±3 − ℓ1) + bp)Sb(

1
2b + iσ r12+r23

2πb + b + bp)Sb(Q + iσ r23−r12
2πb + bp)

.

Limits of Cλ and Ω3. The behaviour of the special function Sb as b → 0 is given in

eqs. (A.6, A.7). The argument of the function Sb must behave in certain ways for the limit

to exist. In the geometrical limit, the spins ℓi and brane parameters rij are kept fixed. This

allows Cλ to have a well-defined limit only provided all brane parameters are equal, as was

anticipated on more heuristic grounds in subsection 2.1. Calling r this common parameter,

and neglecting some numerical prefactors, the limit is found by direct calculation to be

Cλ

(
ℓ1 |

r
ℓ2 |

r
ℓ3 |

r

)
∼

b→0
(cosh r)

P

ℓi+2 eλ r

2b2 C0 , (3.21)
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where the constant C0, which depends only on the spins ℓ1, ℓ2, ℓ3, is

C0 =
Γ(−ℓ2

13)Γ(−ℓ3
12)Γ(−ℓ123 − 1)∏3

i=1 Γ(−2ℓi − 1)

Γ(−ℓ2)

Γ(ℓ3 + 1)
cos π

2 ℓ2
13 × I , (3.22)

I ≡
∫

dp
Γ(−p)Γ(ℓ1 − ℓ2 − p)Γ(−ℓ1 + p)Γ(−ℓ3 + p)Γ(ℓ3 + 1 + p)

Γ(−ℓ1 − ℓ2 + p)
. (3.23)

Now insert this into the three-point function Ω3, eq. (2.14), and use formula (A.9) to get

the simple result

Ω3 ∼
b→0

|t12|ℓ
3
12 |t13|ℓ

2
13 |t23|ℓ

1
23(cosh r)

P

ℓi+2C0 . (3.24)

The dependences on r and ti therefore agree with the geometrical three-point function

Ωgeom
3 eq. (2.5).

Calculation of C0. It remains to explicitly compute the integral I. Inserting 1 =

i
∫
iR dp′ δ(ip − ip′) and δ(ip − ip′) =

∫ ∞
0

dz
z zp+p′ yields

I =

∫ ∞

0

dz

z

∫

iR
dp dp′ zp+p′ Γ(−ℓ1 + p)Γ(−ℓ3 + p)

Γ(−ℓ1 − ℓ2 + p)
Γ(−p)Γ(ℓ1 − ℓ2 − p′)Γ(ℓ3 + 1 + p′)

= Γ(ℓ2
13 + 1)

Γ(−ℓ1)Γ(−ℓ3)

Γ(−ℓ1 − ℓ2)

∫ ∞

0

dz

z
(1 + z)−ℓ213−1F (−ℓ1,−ℓ3,−ℓ1 − ℓ2,−z) . (3.25)

This can be integrated with the help of the formula (A.10), yielding

I = Γ(−ℓ1)Γ(−ℓ3)Γ(ℓ3 + 1)
Γ(ℓ2

13 + 1)Γ(−1
2ℓ3

12 + 1)Γ(−1
2ℓ1

23)

Γ(1 − ℓ3
12)Γ(1

2ℓ2
13 + 1)Γ(−1

2ℓ123)
. (3.26)

It is now easy to compute C0 and compare it with the result Cgeom (2.9) of the geometrical

calculation,

C0 = N1

3∏

i=1

(
N ℓi

2

Γ(−ℓi)

Γ(−ℓi − 1
2 )

)
Cgeom , (3.27)

where N1, N2 are some normalization constants. (Such constants have been neglected

in the computation.) Therefore, the b → 0 limit of the exact boundary three-point

function agrees with the geometrical boundary three point function, up to an overall

renormalization and a renormalization of the vertex operators.

4. Relation with fusing matrix elements

This section is devoted to computing certain fusing matrix elements of the H+
3 model,

and relating them to the boundary three-point function. In the case of Liouville theory,

the determination of the fusing matrix was used for finding the boundary three-point

function [7]. In the present case of the H+
3 model, the boundary three-point function is

already known, and its relation with the fusing matrix can be deduced from the explicit

formula. Apart from testing the validity of general ideas on the structure of conformal

field theories, the exercise may help address questions like: Are AdS2 D-branes the only

continuous, maximally symmetric D-branes in H+
3 ? How do Euclidean AdS2 D-branes in

H+
3 compare with Minkowskian AdS2 D-branes in AdS3? Tentative answers will be given

in the conclusion.
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4.1 An H+
3 fusing matrix

The fusing matrix of the H+
3 model can be defined as the linear transformation between

bases of s- and t-channel four-point conformal blocks. These four-point conformal blocks

are supposed to be completely determined by the symmetry of the model. I will however not

try to rigorously define them. Rather, I will adopt the more functional approach of using

the H+
3 -Liouville relation for deriving s- and t- channel decompositions of the boundary

four-point function. I will call the objects appearing in these decompositions conformal

blocks, and compute the corresponding fusing matrix. This approach will be justified a

posteriori by the relation between the resulting fusing matrix elements with the boundary

three-point function. However, this relation will only involve some particular combinations

of fusing matrix elements; a full understanding of the H+
3 conformal blocks and fusing

matrix is left for future work.

I will however need one important insight from the general definition of conformal

blocks based on symmetries of the model: namely, that in the H+
3 model the conformal

blocks and fusing matrix are expected to depend on the boundary parameters rij . This

is because the symmetry transformations of the fields (2.10) do themselves depend on rij .

(Like these symmetry transformations, the blocks and fusing matrix should be invariant un-

der shifts rij → rij +r0.) This contrasts with the situation in say Liouville theory [7], where

boundary parameters are purely dynamical quantities which affect neither the conformal

blocks nor the fusing matrix.

Functional definition of the conformal blocks and fusing matrix. Consider the

ν-basis boundary four-point function

Ω̃4 =
〈

r41Ψ
ℓ1(ν1|w1)r12Ψ

ℓ2(ν2|w2)r23Ψ
ℓ3(ν3|w3)r34Ψ

ℓ4(ν4|w4)r41

〉
. (4.1)

The s-channel and t-channel four-point conformal blocks

Gℓs

λ12λ34

(
ℓ1 |

r12

ℓ2 |
r23

ℓ3 |
r34

ℓ4 |
r41

∣∣∣∣ νi

∣∣∣∣wi

)
, Gℓt

λ23λ14

(
ℓ1 |

r12

ℓ2 |
r23

ℓ3 |
r34

ℓ4 |
r41

∣∣∣∣ νi

∣∣∣∣wi

)
, (4.2)

are defined as the quantities appearing in the s-channel and t-channel decompositions of

Ω̃4,

Ω̃4 =
∑

λ12,λ34

∫

− 1
2
+iR

dℓs

(
RL(βs)

)−1
Cλ12

 

ℓ1 |
r12

ℓ2 |
r23

ℓs |
r41

!

Cλ34

 

ℓ3 |
r34

ℓ4 |
r41

ℓs |
r23

!

Gℓs

λ12λ34
,(4.3)

=
∑

λ23,λ41

∫

− 1
2
+iR

dℓt

(
RL(βt)

)−1
Cλ23

 

ℓ2 |
r23

ℓ3 |
r34

ℓt |
r12

!

Cλ41

 

ℓ4 |
r41

ℓ1 |
r12

ℓt |
r34

!

Gℓt

λ23λ41
,(4.4)

which otherwise involve the three-point structure constant Cλ and the ν-basis reflection

coefficient RL
r23
2πb

− i
4b

sgn(ν1+ν2),
r41
2πb

+ i
4b

sgn(ν1+ν2)

(
b(ℓs + 1) + 1

2b

)
eq. (3.17).

The fusing matrix is defined as realizing the change of basis between s- and t-channel

blocks,

Gℓs

λ12λ34
=

∑

λ23,λ41

∫

− 1
2
+iR

dℓt F ℓsℓt

λ12λ34λ23λ14




ℓ3 r23 ℓ2

r34 r12

ℓ4 r41 ℓ1


 Gℓt

λ23λ41
. (4.5)
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The conformal blocks and their fusion transformation will be depicted as

ℓ2

ℓ1

ℓ3

ℓ4

r23

r41

r12r34
ℓs

λ12λ34

F ℓsℓt

−→

ℓ2ℓ3

ℓ1ℓ4

r12r34

r23

r41

ℓt

λ23

λ41

. (4.6)

H+
3 conformal blocks from Liouville conformal blocks. The H+

3 boundary four-

point function can be written in terms of a Liouville boundary six-point function as [1]:

Ω̃4 = δ(
∑

νi)|
∑

νiwi|
∣∣∣∣∣

y12
∏

i<i′ wii′∏
a=1,2

∏
i(ya − wi)

∣∣∣∣∣

1
2b2

〈
4∏

i=1

Bβi(wi) B− 1
2b (y1)B

− 1
2b (y2)

〉
, (4.7)

where βi = b(ℓi + 1) + 1
2b as before, the Liouville boundary parameter is still given by

eq. (3.3), and y1, y2 are still defined as the zeroes of a function ϕ(y) (3.2). The idea is

now to decompose the Liouville six-point function in terms of Liouville structure constants

and conformal blocks, out of which the H+
3 structure constants Cλ and conformal blocks

should be reconstructed. The details of the decomposition are quite sensitive on signs of

the isospin variables νi, which determine the positions of the Liouville degenerate fields

B− 1
2b (y1), B

− 1
2b (y2) on the worldsheet boundary. (In some cases, the degenerate fields can

even live in the bulk.) Such subtleties would be very relevant to a rigorous definition of

the conformal blocks; but here I will neglect them and assume

(sgnν1, sgnν2, sgnν3, sgnν4) = (+,−,−,−) ⇒ w2 < y1 < w3 < y2 < w4 . (4.8)

Now I claim that, in this regime, s-channel blocks can be built in terms of Liouville blocks as

Gℓs

λ12λ34
= N+

r41,r23
(ℓs)

∑

η2,η4

T
[+1(2)s]
λ12,η2

T
[+s3(4)]
λ34,η4 η2η4

23

4 1

s , (4.9)

where, in the diagrammatic representation of the standard six-point Liouville blocks,

the wiggly lines are the degenerate fields, whose fusion channels are labelled η = ± like

in the four-point Liouville blocks of eq. (3.4), and the solid lines are the generic fields

with momenta β1, β2, β3, β4, βs. (The prefactors in eq. (4.7) are implicitly included in the

Liouville blocks.) (Remember that Nσ
r,r′(ℓ) was defined in (3.16), and T

[sgnνi]
λ,η in (2.18).)

The proof that such s-channel blocks do indeed satisfy eq. (4.3) is straightforward, given

the relation (3.12) between Liouville and H+
3 boundary three-point structure constants. It

is of course also possible to find t-channel blocks satisfying eq. (4.4),

Gℓt

λ23λ41
= N−

r12,r34
(ℓt)

∑

η2,η4

T
[+t(2)3]
λ23,η2

T
[+1t(4)]
λ41,η4

η2

η4

2

14

3

t (4.10)

Let me now derive the fusing matrix which relates these s- and t-channel blocks.
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H+
3 fusing matrix from Liouville fusing matrix. The relation between the Liouville

conformal blocks appearing in the H+
3 s- and t-channel conformal blocks is given by the

Liouville fusing matrix, which is defined by [8]

23

4 1

s =

∫

Q
2

+iR
dβt FL

βsβt

[
β3 β2

β4 β1

] 2

14

3

t . (4.11)

Applying this relation to the Liouville blocks appearing in the formulas for H+
3 four-point

blocks (4.9) and (4.10) yields an H+
3 fusing matrix satisfying eq. (4.5):

F ℓsℓt

λ12λ34λ23λ14




ℓ3 r23 ℓ2

r34 r12

ℓ4 r41 ℓ1


 =

N+
r41,r23

(ℓs)

N−
r12,r34(ℓt)

(4.12)

×
∑

η2,η4

T
[+1(2)s]
λ12,η2

T
[+s3(4)]
λ34,η4

FL
βsβt

[
β3 β2 − η2

2b

β4 − η4

2b β1

]
(
T−1

)[+t(2)3]

η2,λ23

(
T−1

)[+1t(4)]

η4,λ41
.

Notice that the four Liouville fusing matrix elements appearing in this formula are not all

independent, but can be related to any two of them via linear equations whose coefficients

are products of Gamma functions. (See appendix A.3.)

It can actually be proved that this fusing matrix satisfies a Pentagon equation, but

this is outside the scope of this article. In general conformal field theories, the Pentagon

equation is the structural reason for the existence of a relation between the fusing matrix

and the boundary three-point function. Here I will however derive such a relation by

direct calculation.

4.2 Discrete representations of S̃L(2, R)

This subsection is a technical interlude devoted to the definition and study of the discrete

representations of S̃L(2, R). There may seem to be no physical motivation for studying

such representations in the context of the H+
3 model, whose spectrum is purely continuous.

However, it will turn out that discrete representations play a crucial role in the relation

between the fusing matrix and the boundary three-point function.5

Discrete representations and discrete fields. There are two series of discrete repre-

sentations, called D+
ℓ and D−

ℓ . A representation D±
ℓ is defined as having a state which is

annihilated by the generator J∓ of the sℓ2 Lie algebra, whose commutation relations and

quadratic Casimir operator are

[J3, J±] = ±J±, [J+, J−] = −2J3, C = −(J3)2 + 1
2(J+J− + J−J+) . (4.13)

5Note that by focusing on the fSL(2, R) horizontal subgroup I am still ignoring the rest of the infinite-

dimensional symmetry group of the model. Representations of fSL(2, R) can however easily be extended

to highest-weight representations of the full symmetry group. Anyway, since discrete representations are

absent from the spectrum, their structure will be of no importance in the following. Only formal properties

like the allowed values of the spins will be needed.
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The eigenvalues of C are labelled in terms of the spin ℓ as C = −ℓ(ℓ+1), and the eigenvalues

of J3 are called m. The J−-annihilated state of a D+
ℓ representation can have either

m = ℓ + 1 or m = −ℓ. In the case ℓ ∈ 1
2Z, such a state must have m > 0, otherwise

a J+-annihilated state appears at J3 = −m, and the representation is finite-dimensional

instead of being discrete. In the case of generic ℓ however, both D+
ℓ representations should

be accepted, but distinguishing them will not matter in the following. I will also ignore

the special case ℓ ∈ 1
2Z. Note however that discrete representations of SL(2, R) must have

ℓ ∈ 1
2Z, whereas discrete representations of the universal cover S̃L(2, R) exist for all ℓ ∈ C.

A field Ψℓ(t) belonging to the D±
ℓ representation can be analytically continued to the

half-plane U± ≡ {±ℑt > 0} [13]. So if Ψℓ2(t2) ∈ Dσ
ℓ2

with σ = ±, then the t-basis

three-point function Ω3 (2.14) must be analytic in t2 ∈ U±. This constrains its behaviours

near t2 = t1 and t2 = t3. For instance, near t2 = t1 the relevant factors of Ω3 behave as

Ω3 ∝ |t12|ℓ
3
12e

k−2
2

r12sgnt12C−sgnt12 , which has an analytic continuation to t2 ∈ Uσ provided

eiπσℓ312e−(k−2)r12C− = C+. Together with the condition eiπσℓ123e(k−2)r23C+ = C− from

t2 ∼ t3, this is equivalent to

ℓ2 ∈ σ
k − 2

2πi
(r12 − r23) + Z , (4.14)

Cλ = λn e
λ
2 [iπσ(ℓ1−ℓ3)−

k−2
2

(r12+r23)]C0 , (4.15)

where C0 is a λ-independent constant, and n ∈ {0, 1} is the parity of the element of Z

above. The condition on ℓ2 depends only on the field r12Ψ
ℓ2(t2)r23 and not on the other

fields in the three-point function, and it is the condition for that field to be discrete.

The interesting feature of discrete representations is therefore the disappearance of

the multiplicity λ in the boundary interactions: a three-point function involving a discrete

representation is determined in terms of only one structure constant C0, instead of C± in

the generic case.

Discrete ν-basis fields. Since the investigation of the fusing matrix in H+
3 heavily

relied on the ν-basis, it will be necessary to understand how fields transforming in discrete

representations behave in the ν-basis. The analyticity of discrete fields for t ∈ U± translates

into corresponding ν-basis fields Ψℓ(ν) = |ν|ℓ+1
∫

R
dt eiνtΨℓ(t) vanishing for ±ν > 0. How

does this simplify the coefficients T
[±i(j)k]
λ,η eq. (2.22)–(2.23), which enter the formula for

the fusing matrix? The coefficients T
[σ1(2)3]
λ,η are defined for sgnν2 = −σ, and the explicit

formula shows

ℓ2 ∈ −σ
k − 2

2πi
(r12 − r23) + Z ⇒ T

[σ1(2)3]
λ,− = 0 . (4.16)

What if it is the third field in Ω3 which belongs to a discrete representation Dσ
ℓ3

? Then

similarly T
[σ12(3)]
λ,− = 0, and the relation (2.25) yields

ℓ3 ∈ σ
k − 2

2πi
(r23 − r31) + Z ⇒

T
[σ1(2)3]
λ,+

T
[σ1(2)3]
λ,−

=
M

(23)1
++

M
(23)1
−+

, (4.17)
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so that T
[σ1(2)3]
λ,+ must have the same λ-dependence as T

[σ1(2)3]
λ,− . Finally, what if it is the

first field in Ω3 which now belongs to Dσ
ℓ1

? Just use the explicit formulas for T
[σ1(2)3]
λ,η to

read off how they behave under 1 ↔ 3, and deduce from the previous case

ℓ1 ∈ −σ
k − 2

2πi
(r31 − r12) + Z ⇒

T
[σ1(2)3]
λ,+

T
[σ1(2)3]
λ,−

=
M

(21)3
++

M
(21)3
−+

sin
(
πℓ2 − iσ r23−r12

2b2

)

sin
(
πℓ2 + iσ r23−r12

2b2

) . (4.18)

4.3 Relation fusing matrix — boundary three-point function

The case of Liouville theory. Let me begin with recalling the form of this relation in

Liouville theory. On the one hand this will be useful in the derivation of the H+
3 relation,

on the other hand this will illustrate what type of relation should be expected.

The Liouville boundary three-point function (3.6) is related to the Liouville fusing

matrix (4.11) by [7]

CL

(
β1 |

s12

β2 |
s23

β3 |
s31

)
= RL

s31,s12
(β1)

gL
s31,s12

(β1)

gL
s12,s23

(β2)gL
s23,s31

(β3)
FL

Q
2

+is23,β1

[
β3 β2

Q
2 + is31

Q
2 + is12

]
,

(4.19)

where the function gL
s,s′(β), which may be seen as a sort of square root of the reflection

coefficient (3.10) and satisfies gL
s,s′(β) = RL

s,s′(Q − β)gL
s,s′(Q − β), is

gL
s,s′(β) = µ

1
2
b−1β

L

Γb(Q)Γb(Q − 2β)Γb(Q + 2is)Γb(Q − 2is′)∏
±± Γb(Q − β ± is ± is′)

. (4.20)

The basic idea, which is originally due to Cardy [14], is therefore to associate some momenta

βij = Q
2 + isij to the boundary conditions sij. These momenta are then used as inputs in

the fusing matrix [15].

Peculiarities of the H+
3 model. Unlike Liouville theory, the H+

3 model does not a

priori conform to the assumptions which would make these ideas work. In particular, the

SL(2, C) representations appearing in the bulk spectrum are labelled by their sole spin,

whereas the S̃L(2, R) representations appearing in the boundary spectrum are labelled by a

spin and an extra continuous parameter α = r− r′ depending on the boundary parameters

r, r′. Associating bulk spins to the boundary conditions may be useful to some extent for

understanding the moduli space of D-branes in H+
3 [16], but the inputs in the H+

3 fusing

matrix rather need to be pairs (ℓ, α) as in the boundary spectrum.

Another feature of the H+
3 case is the presence of a multiplicity index λ in the three-

point structure constant Cλ, and of four corresponding indices in the fusing matrix. The

generic expectation [17, 18] is that such multiplicities should also appear as indices of the

boundary fields themselves. There should indeed be a correspondence between boundary

fields and three-point vertices:

+
Ψℓ2

r12 r23

ℓ2

ℓ23ℓ12

r23r12

r0

λ2

(4.21)
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Which spins ℓ12, ℓ23 should correspond to the boundary conditions r12, r23? What should r0

and λ2 be? The idea proposed here is to choose ℓij as discrete spins, which would eliminate

the index λ2 as explained in the previous subsection, and determine r0. The relation

between boundary three-point function and the fusing matrix will then be of the type:

ℓ2

ℓ1ℓ3

r12r23

r31

λ

ℓ2

ℓ12

ℓ3

ℓ31

r23

r0

r12r31

ℓ23

λ2λ3

F ℓ23ℓ1
−→

ℓ2ℓ3

ℓ12ℓ31

r12r31

r23

r0

ℓ1

λ

λ1

, (4.22)

where the dependence of the fusing matrix F ℓ23ℓ1 on λ1, λ2, λ3 is trivial thanks to the

spins ℓij being discrete.

Derivation of the relation by direct calculation. I will not seek further guidance

from general structural ideas, but rather from the explicit formulas. Namely, I will use

the relations between the H+
3 and Liouville three-point structure constants (3.12), then

between the Liouville structure constant and fusing matrix (4.19), and finally between the

Liouville and H+
3 fusing matrices (4.12). Specifically, start with

Cλ =
∑

η=±

CL
σ (β1|β2 − η

2b |β3) CL
σ (β2| − 1

2b |Q − β2 + η
2b )

(
T−1

)[σ1(2)3]

η,λ
, (4.23)

and insert the expression for CL
σ (β1|β2 − η

2b |β3) in terms of the Liouville fusing matrix in

the case σ = +,

Cλ = RL
r31
2πb

+ i
4b

,
r12
2πb

− i
4b

(β1)
gL

r31
2πb

+ i
4b

,
r12
2πb

− i
4b

(β1)

gL
r23
2πb

− i
4b

,
r31
2πb

+ i
4b

(β3)

∑

η=±

CL
+(β2| − 1

2b |Q − β2 + η
2b )

gL
r12
2πb

− i
4b

,
r23
2πb

− i
4b

(β2 − η
2b)

×
(
T−1

)[+1(2)3]

η,λ
FL

Q
2
−

r23
2πib

+ 1
4b

,β1

[
β3 β2 − η

2b
Q
2 − r31

2πib − 1
4b

Q
2 − r12

2πib + 1
4b

]
. (4.24)

This combination
∑

η=± of two FL matrices should be compared to the combination ap-

pearing in the following rewriting of the H+
3 fusing matrix (4.12), where I use the property

T [+12(3)] = T [−1(3)2]:

∑

λ1

T
[−,12,(31),1]
λ1,η0

F ℓ23ℓ1
λ2λ3λλ1




ℓ3 r23 ℓ2

r31 r12

ℓ31 r0 ℓ12


 (4.25)

=
N+

r0,r23
(ℓ23)

N−
r12,r31(ℓ1)

T
[−,23,(31),3]
λ3,η0

∑

η=±

T
[+,12,(2),23]
λ2,η

(
T−1

)[+1(2)3]

η,λ
FL

β23,β1

[
β3 β2 − η

2b

β31 − η0

2b β12

]
.

The FL fusing matrices which appear in the last two equations are equal provided their

arguments are identical modulo reflection β → Q − β. This is the case if one assumes

η0 = + and βij = b(ℓij + 1) + 1
2b with

ℓij = −1

2
− rij

2πib2
+

1

4b2
. (4.26)
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This relation between spins and boundary parameters agrees with the one proposed in [16].

However, the idea is now to interpret the corresponding representations as discrete repre-

sentations. This is possible if the relation ℓij ∈ −k−2
2πi (rij − r0) + Z is obeyed. And this

relation indeed holds provided the following assumption is made:

r0 = iπ

(
1

2
− b2

)
. (4.27)

Then, according to the formulas (4.17) and (4.18), the factors T
[−,12,(31),1]
λ1,η0

, T
[−,23,(31),3]
λ3,η0

and T
[+,12,(2),23]
λ2,η simplify (without vanishing), in the sense that their λ and η-dependences

disentangle. In particular, the λ2-dependence in eq. (4.25) can be rewritten as a prefactor,

outside the sum
∑

η=±.

Test and results. Now that the parameters r0, ℓij are fixed, comes the test: are the

combinations of two FL-matrices in (4.24) and (4.25) proportional up to an overall factor?

Direct calculations (which use eq. (4.17)) indeed show that they are, thanks to the following

identity, valid for any σ = ±:

1

RL
r12
2πb

−σ i
4b

,
r23
2πb

+σ i
4b

(β2)

gL
r12
2πb

−σ i
4b

,
r23
2πb

−σ i
4b

(Q − β2 − 1
2b)

gL
r12
2πb

−σ i
4b

,
r23
2πb

−σ i
4b

(β2 − 1
2b )

=
T

[σ,12,(2),23]
λ2,+

T
[σ,12,(2),23]
λ2,−

. (4.28)

It is then possible to define coefficients of the type

gλ
r,r′(ℓ) = e

−λ
h

i π
2
(ℓ+1)+ r+r′

4b2

i

g0
r,r′(ℓ) , (4.29)

where g0
r,r′(ℓ) is λ-independent, such that for all λ2, λ3 = ±

Cλ

(
ℓ1 |

r12

ℓ2 |
r23

ℓ3 |
r31

)
= Rr31,r12(ℓ1)

∑

λ1=±

gλ1
r31,r12

(ℓ1)

gλ2
r12,r23(ℓ2)g

λ3
r23,r31(ℓ3)

F ℓ23ℓ1
λ2λ3λλ1




ℓ3 r23 ℓ2

r31 r12

ℓ31 r0 ℓ12


 .(4.30)

This is the sought-after expression for the boundary three-point function in terms of fusing

matrix elements, which depend on the particular arguments r0 and ℓij defined above. This

result can be rewritten in terms of a “partly discrete fusing matrix” F̃ such that

Cλ

(
ℓ1 |

r12

ℓ2 |
r23

ℓ3 |
r31

)
= Rr31,r12(ℓ1)

g0
r31,r12

(ℓ1)

g0
r12,r23

(ℓ2)g0
r23,r31

(ℓ3)
F̃ ℓ23ℓ1

λ

[
ℓ3 ℓ2

ℓ31 ℓ12

]
. (4.31)

In this notation, the H+
3 result becomes very similar to the Liouville result (4.19).

Representation-theoretic discussion. Let me now check that the use of discrete rep-

resentations in the fusing matrix, as suggested by the above calculations, is actually com-

patible with the algebraic properties of these representations. Unfortunately, the fusion

products of vertex operators with S̃L(2, R) symmetry, and even the tensor products of

S̃L(2, R) representations, are apparently unknown. However, some features can be ex-

trapolated from the known SL(2, R) representations, where tensor products of the type
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D+ ⊗ D− are expected to yield continuous representations (and possibly discrete ones),

whereas tensor products D+ ⊗D+ or D− ⊗D− only yield discrete representations. These

statements should also hold for fusion products of S̃L(2, R) representations.

It is therefore important to determine whether the discrete representations of spins

ℓij (4.26) belong to the D+ or to the D− series. According to the rule (4.14), and taking

good care of the orientation of the worldsheet boundary, the discrete representations are

found to be D+
ℓ12

, D−
ℓ31

and D±
ℓ23

. The sign in D±
ℓ23

depends on a choice of orientation, as

can be seen in the following oriented depiction of the fusing matrix (4.22),

ℓ2

ℓ12

ℓ3

ℓ31

ℓ23 F ℓ23ℓ1
−→

ℓ2ℓ3

ℓ12ℓ31

ℓ1
. (4.32)

In this picture, incoming arrows denote D+ representations, outgoing arrows denote D−

representations, and lines without arrows denote C (Continuous) representations. The

vertices involving discrete representations are all of the type, and they therefore

correspond to non-vanishing D+ ⊗ D− → C intertwiners.

5. Conclusions and speculations

Another limit of the boundary three-point function. The geometrical (or minisu-

perspace) limit of the boundary three-point function has provided a non-trivial check of the

exact formula, see subsection 3.3. In this limit, the brane parameters r12, r23, r31 are kept

fixed, and the limit then exists only provided they are all equal. It is however interesting

to consider another b → 0 limit, where the quantities Rij ≡ rij

2πb2 are kept fixed. This

limit no longer requires them to be equal, and can be explicitly computed from eqs. (2.14)

and (3.20):

Ω3 ∼ |t12|ℓ
3
12 |t13|ℓ

2
13 |t23|ℓ

1
23eπR12sgnt12+πR23sgnt23+πR31sgnt31 (5.1)

Γ(−ℓ2
13)Γ(−ℓ3

12)Γ(−ℓ123 − 1)∏3
i=1 Γ(−2ℓi − 1)

∑

σ=±

eπ(R31+ 1
2
iσℓ213)sgnt12t23t31 Γ (iσ[R23 − R12] − ℓ2)

Γ (iσ[R23 − R31] + ℓ3 + 1)

∫
dp

Γ(iσ[R23 − R31] + p)Γ(ℓ1 − ℓ2 + p)Γ(iσ[R12 − R23] − ℓ1 − p)
∏

± Γ(−ℓ±3 − p)

Γ(−ℓ1 − ℓ2 − p)
.

This limit has an analog in the case of D-branes in SU(2): the Alekseev-Recknagel-

Schomerus limit where maximally symmetric D-branes become fuzzy spheres [19]. In

the rational SU(2) theory, the algebra of boundary fields on a given D-brane then be-

comes a finite-dimensional matrix algebra, with the size of the matrices depending on the

boundary parameter. In the present H+
3 case, the algebra of boundary fields is infinite-

dimensional, and may have an interpretation as the algebra of functions on a non-compact,

non-commutative AdS2 manifold. The above limit of Ω3 would then describe the product

in this algebra, whose noncommutativity ultimately comes from the lack of worldsheet

parity invariance of the H+
3 model with boundary.
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Towards the Minkowskian theory. Solving the H+
3 model may be seen as a step in

the study of string theory in the Minkowskian AdS3. On the one hand, this theory is

expected to be technically more complicated due to the presence of discrete and spectrally

flowed representations in the spectrum [20], in addition to the purely continuous spectrum

of the H+
3 model. On the other hand, the formal structure of the theory is probably more

conventional, since the symmetry algebra safely factorizes into left- and right-movers.

Let me explain why the formalism of the present article may be well-suited to studying

strings in the Minkowskian AdS3. The conventionality of the formal structure of that

theory suggests that AdS3 four-point conformal blocks could be defined using the usual

factorization assumption. This assumption is that in the limit w12 → 0, where two fields

come close together on the worldsheet, the s-channel four-point blocks should factorize into

products of three-point blocks:

23

4 1

s ∼
w12→0

3

4

s ×
2

1

s (5.2)

(It can be seen that the H+
3 blocks defined in section 4.1 do not obey this assumption.)

Now, this assumption would lead to s-channel blocks being singular at νs ≡ ν1 + ν2 = 0,

simply because the three-point blocks themselves are. This νs = 0 singularity takes very

characteristic forms when discrete and spectrally flowed representations propagate in the

s-channel. As was recalled in section 4.2, an s-channel field in a discrete representation

would indeed vanish for either νs < 0 or νs > 0. I now add that a spectrally flowed field

would be a distribution supported at νs = 0, as can be deduced from [21]. Therefore,

ν-basis blocks permit an easy characterization of continous, discrete and spectrally flowed

s-channel modes, based on their behaviour near νs = 0.

New D-branes in H+
3 ? The relation between the boundary three-point function and the

fusing matrix (4.30) relies on associating certain boundary fields to the boundary conditions

of the model. However, the boundary conditions only have a real parameter r, and they

are associated a the set of discrete boundary fields, which are far from exhausting the full

space of boundary fields rΨ
ℓ
r′ parametrized by their spin ℓ and by α = r − r′. Can fusing

matrices with generic entries (ℓ, α) be interpreted as three-point structure constants on

new maximally symmetric D-branes? If not, why do the discrete representations, and only

them, give rise to D-branes in H+
3 ?
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A. Some useful formulas

A.1 Special functions Γb and Sb

The special functions Γb and Sb usually appear in the study of Liouville theory at parameter

b > 0 and background charge Q = b + b−1. I use the same conventions as [9], where some

more details can be found. The following definitions are valid for 0 < ℜx < Q:

logΓb(x) =

∫ ∞

0

dt

t

[
e−xt − e−Qt/2

(1 − e−bt)(1 − e−t/b)
− (Q/2 − x)2

2
e−t − Q/2 − x

t

]
, (A.1)

logSb =

∫ ∞

0

dt

t

[
sinh(Q

2 − x)t

2sinh( bt
2 )sinh( t

2b )
− (Q − 2x)

t

]
. (A.2)

These functions, which are related by Sb(x) = Γb(x)
Γb(Q−x) , can be extended to meromorphic

functions on the complex plane thanks to the shift equations

Γb(x + b) =

√
2πbbx− 1

2

Γ(bx)
Γb(x) , Γb(x + 1/b) =

√
2πb−

x
b
+ 1

2

Γ(x/b)
Γb(x) (A.3)

Sb(x + b) = 2sin(πbx)Sb(x) , Sb(x + 1/b) = 2sin(πx/b)Sb(x) (A.4)

Using the integral representations for the special functions, one can study their behaviour

for b → 0 while keeping the quantities x, y fixed:

Γb(bx) → (2πb3)
1
2
(x− 1

2
)Γ(x) , Γb(Q − bx) →

(
b

2π

) 1
2
(x− 1

2
)

, (A.5)

Sb(bx) → (2πb2)x−
1
2 Γ(x) , Sb(

1

2b
+ bx) → 2x− 1

2 , (A.6)

|ℜy| <
1

2
⇒ Sb(

1
2b + bx + 1

by) →
(cos πy

2

) 1
2
−x

exp− 1

b2

∫ ∞

0

dt

t

[
sinh 2yt

2t sinh t
− y

t

]
. (A.7)

A.2 Miscellaneous

The following integral [4], which should be understood as a distribution, appears in eq. (2.8).

∫

R

dy eiθy|y|α =
2

|θ|α+1
Γ(α + 1) sin π

2 α . (A.8)

The following identity, which is valid for three arbitrary real numbers t1, t2, t3, is applied

to isospins in eqs. (2.14) and (3.24).

sgnt12t23t31 + sgnt12 + sgnt23 + sgnt31 = 0 . (A.9)

An integral formula from [10] (7.512) is used in eq. (3.25):

∫ 1

0
dx xα−γ(1 − x)γ−β−1F (α, β, γ, x)=

Γ(1 + 1
2α)Γ(γ)Γ(α − γ + 1)Γ(γ − β − 1

2α)

Γ(α + 1)Γ(1
2α + 1 − β)Γ(γ − 1

2α)
.(A.10)
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A.3 Linear equations for certain Liouville fusing matrices

Let me derive linear relations involving the fusing matrices FL
η1η3

≡ FL
βsβt

[
β3−

η3
2b

β2

β4 β1−
η1
2b

]

and FL
η2η4

≡ FL
βsβt

[
β3 β2−

η2
2b

β4−
η4
2b

β1

]
, where ηi = ± are signs. I will use a sequence of Liouville

fusing transformations, including some degenerate ones whose matrix elements are the

M
(ij)k
ηη′ defined in eq. (2.26):

η
−η

23

4 1

M
(3s)4
η3η M

(1s)2
η1,−η−→ η3

η1

F L
η1η3−→

η3

η1

= M
(23)t
η2η3 ↓ M

(41)t
η4η1

η

−η
−→

M
(4s)3
η4η M

(2s)1
η2,−η

η2
η4 −→

F L
η2η4

η2

η4

(A.11)

Each choice of η = ± yields a formula for the four matrix elements FL
η2η4

in terms of FL
η1η3

:

∀η = ±, FL
η2η4

=
∑

η1,η3

M (23)t
η2η3

M (41)t
η4η1

FL
η1η3

M
(3s)4
η3,−η

M
(4s)3
η4,−η

M
(1s)2
η1η

M
(2s)1
η2η

. (A.12)

Using both choices η = ±, one can eliminate FL
η2η4

and find the following rank two system

of four equations for FL
η1η3

, where J ≡ b−1(β − Q
2 ):

∀η2, η4,
∑

η1,η3

∏
± Γ(1

2 ± Js + η3J3 − η4J4)
∏

± Γ(1
2 ± Js + η1J1 − η2J2)∏

± Γ(1
2 ± Jt + η3J3 − η2J2)

∏
± Γ(1

2 ± Jt + η1J1 − η4J4)

× sinπ(η2J2 + η3J3 − η1J1 − η4J4) FL
η1η3

= 0 . (A.13)
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